
NASA Contractor Report 201740

ICASE Report No. 97-46

High-Level Management of Communication Schedules

in HPF-Like Languages

Siegfried Benkner

Piyush Mehrotra
John Van Rosendale

Hans Zima

NASA Contract No. NAS1-19480

September 1997

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA 23681-0001

Operated by Universities Space Research Association

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23681-0001

High-Level Management of Communication Schedules in HPF-like

Languages*

Siegfried Benkner a Piyush Mehrotra b John Van Rosendale b Hans Zima a

aInstitute for Software Technology and Parallel Systems,

University of Vienna, Liechtensteinstr. 22, A-1090 Vienna, Austria

E-Mail: {sigi,zima} @par.univie.ac.at

bICASE, MS 403, NASA Langley Research Center, Hampton VA. 23681 USA

E-Mail: {pm,jvr}@icase.edu

Abstract

The goal of High Performance Fortran (HPF) is to "address the problems of writing data parallel

programs where the distribution of data affects performance", providing the user with a high-level

language interface for programming scalable parallel architectures and delegating to the compiler the

task of producing an explicitly parallel message-passing program. For some applications, this ap-

proach may result in dramatic performance losses. An important example is the inspector//executor

paradigm, which HPF uses to support irregular data accesses in parallel loops. In many cases,

the compiler does not have su_cient information to decide whether an inspector computation is

redundant or needs to be repeated. In such cases, the performance of the whole program may be

significantly degraded.

In this paper, we describe an approach to solve this problem through the introduction of con-

structs allowing explicit manipulation of communication schedules at the HPF language level. The

goal is to avoid the use of EXTRINSICS for expressing irregular computation via message-passing

primitives, while guaranteeing essentially the same performance. These language features allow

the user to control the reuse of schedules and to specify access patterns that may be used to com-

pute a schedule. They are being implemented as part of the HPF+ language and we report some

preliminary performance numbers from this implementation.

*The work described in this paper was partially supported by the ESPRIT IV Long Term Research Project 21033

"HPF+" of the European Commission, by the Austrian Ministry for Science and Transport under contract GZ

613.580/2-IV/9/95, and by the National Aeronautics and Space Administration under NASA Contract No. NAS1-

19480 while the authors were in residence at ICASE, NASA Langley Research Center, Hampton, VA 23681.

1 Introduction

The High Performance Fortran Forum (HPFF), which first convened during 1992, set itself the task

of defining language extensions for Fortran to facilitate data parallel programming on a wide range

of parallel architectures, without sacrificing performance. Much of the work on HPF-1 [l l] focussed

on extending Fortran 90 by directives for specifying alignment and regular data distributions (block

and cyclic). Other extensions allow the specification of explicitly parallel loops, in particular

with the FORALL statement and construct and the INDEPENDENT directive, as well as a

number of library routines. It soon became apparent that HPF-1 did not provide enough flexibility

for an efficient formulation of many advanced algorithms. Such algorithms, for example weather

forecasting codes or crash simulations, are often characterized by the need to distribute data in an

irregular manner and dynamically balance the computational load of the processors. HPF-2 [12],

together with its "approved extensions", is a significant step in supporting such algorithms.

HPF directives provide, at a high level of abstraction, information useful to the compiler in the

context of a single-threaded data parallel paradigm with a global address space. It is the respon-

sibility of the compiler to translate a program containing such directives into an efficient parallcl

Single-Program-Multiple-Data (SPMD) target code using explicit constructs for data-sharing, such

as message-passing on distributed memory machines. The study of real applications has, however,

revealed that even with the enhanced data and work distributions offered by the latest version of the

language, certain "low-level" information that may decisively influence a program's performance

cannot be expressed.

In this paper we focus on one such example - the efficiency of the communication required to

handle irregular data accesses in parallel loops. Most compilers generate code which at runtime

determines a communication schedule to handle the gathering and scattering of nonlocal data

required for executing the parallel loop. The computation of such a schedule, based on a runtimc

analysis of the access patterns to an array, is performed by a routine called an inspector. Inspectors

may be very time-consuming; as a consequencc, the avoidance of redundant inspector executions

is a high-priority goal.

In this paper, we support this goal by proposing a method which allows control of schedule

computations at the HPF language level. Our method is based on the concept of schedule variables,

whose values are communication schedules computed by an inspector or, alternatively, defined by

the user by specifying the access pattern to an array with appropriate high-level directives.

Thus, using these features the programmer is not forced to switch to the message-passing

paradigm via the EXTRINSICS facility of HPF, while obtaining basically the same performance

as with message passing. The concepts described here are applicable to any HPF-like language;

they are currently being implemented as part of the language HPF+, which was initially specified in

[5] and is currently being developed into a fully-specified Fortran 95-based programming language

in the ESPRIT Long Term Research Project "HPF÷". The required compiler and runtime support

is being implemented as a part of the Vienna Fortran Compilation System (VFCS) [2].

The paper is organized as follows. The next section provides a more detailed discussion of

the inspector-executor paradigm and additional motivation for our work. Section 3 introduces the

concepts and terminology required to describe schedules and access patterns. Section 4 introduces

the new features to control the generation of schedules through a scrics of small examples while a

morecompleteexampleisgivenin Section5. Section6 describeshowuserscanspecifythe access
patterns for a loop. Section7 discussesthe implementationof thesefeaturesand providessome
detailsof the performancewehavegainedwhenusingtheseconceptsin a compiler. The paper
endswith anoverviewof relatedwork (Section8) anda shortconclusion.

2 Motivation

In many cases - in particular, for regular numerical computations operating on dense data structures

- an HPF compiler can statically determine the access patterns for arrays in the source program and,

from this information, derive the required communication in the parallel target program. This is not

possible for irregular problems, in which arrays are accessed via index arrays defined dynamically.

For such problems, the access patterns as well as the associated communication schedules must

be computed at runtime. The standard implementation technology for this situation is called the

inspector-executor paradigm [13, 16, 17]. That is, for a parallel loop with indirect data accesses,

an inspector analyzes the data access pattern at runtime. From the access pattern, the array

distribution, and the work distribution of the loop, a communication schedule can be derived. This

schedule is then used in the executor to actually perform the required communication for the loop

by gathering all nonlocal data to be read in the loop at the beginning, and scattering all nonlocal

data that were written in the loop, at the end.

The inspector phase for a parallel loop can be very expensive and may dominate the execution

time for a whole program. However, the parallel loop is often enclosed in a sequential loop (for

example, a time-step loop), and its communication schedule may be invariant over many or all of the

iterations of the sequential loop. The recognition of invariant communication schedules is crucial

for obtaining high object code performance. In some cases, a compiler can recognize this invariance

automatically. However, often such loop structures are hidden in a hierarchy of procedure calls, so

that even sophisticated interprocedural analysis may be unable to achieve this goal.

The main motivation for the language extensions described in this paper is to allow the user

explicit control over the generation of communication schedules, thus avoiding the redundant com-

putation of communication schedules by an inspector. We introduce schedule functions as mappings

from a processor to sets of array indices, describing the set of array elements that have to be com-

municated (read or written) to or from each processor. By combining schedule functions with

a specific array and a direction (read or write), we obtain an array schedule, which is a precise

specification of a gather or scatter communication for that array. We also introduce the concept

of a schedule variable which can be used to name the schedule computed by an inspector. Using

schedule variables, the user can explicitly control the reuse of schedules by directing the compiler to

skip inspector analysis if a related schedule variable already contains the communication schedule

required for executing the loop.

For parallel loops with complex bodies, possibly including nested loops, conditional statements

and procedure calls, the inspector computation can become highly complex. If, in such a situation,

the user is in a position to specify the access pattern of a loop, the inspector computation can

be replaced by an evaluation of that pattern in the context of the loop. Our language extensions

support this feature by introducing the concept of a pattern function - a mapping from a loop

iteration range to the powerset of an array index domain. A pattern function can be combined

with a specific loop and a specific array, to provide an array loop pattern which can be directly

mapped to an array schedule. Wc provide a mechanism for the specification of simple patterns

based on a generalization of Fortran 90 section notation, taking advantage of the fact that vector

subscripts can be used to describe irregular access patterns. For more general cases, for example

when access patterns depend on nested conditionals and loops, the absence of set types in Fortran

enforces new syntax and semantics. We are currently studying mechanisms based on the concept of

user-defined pattern functions, which allow the specification of arbitrary patterns, and will report

on such mechanisms in a future paper.

3 Schedules and Patterns: Concepts and Terminology

In this section, we introduce the concepts and terminology required for a discussion of communica-

tion schedules and access patterns. Assume for the following that A is an array with index domain

I, P denotes a set of processors, and L denotes a perfectly nested loop with iteration domain R.

3.1 Data and Work Distributions

Definition 1 Data Distribution

1. A (replication-free) (data) distribution for A with respect to P is a total function 5A : I --*

P.

2. Let A, (_A :I --_ P, and p E e be given. Then AA(p) := {i E I I 5A(i) = P} determines the set

of elements of A owned by processor p under distribution 5A. This is called the distribution

segment of A with respect to p, its elements are the local variables of A in processor p. []

Definition 2 Work Distribution

1. A work distribution for L is a total function w L : R ---* P. For each r C R, wL(r) specifies

the processor in which iteration r is to be executed.

2. Let L, a work distribution _d L, and p C P be given. Then xL(p) denotes the set of all iterations

of L to be executed in p: xL(p) := {r e R [wL(r) = p}. xL(p) is called the execution set

of p with respect to L. []

3.2 Schedules

Definition 3 Schedule Functions and Array Schedules

1. Let I denote an array index domain. A schedule function is a total function a : P --* P(I),

where P(I) designates the powerset (set of all subsets) of the index domain I.

2. An array schedule for array A with distribution segment)_A is a triplet (A, a, d), where

(a) a is a schedule function with range :P(I)

(b) d C {R,W} specifies a direction: read ("R"), or write)("W"). If d="R", then the

array schedule is called a read or gather schedule, otherwise a write or scatter schedule.

(c) for each p E P: a(p) M)_A(p) = ¢. []

Schedule Application

Let _ -- (A, a, R) denote a read schedule. Then the application of _ results for each processor p in

• receiving all elements A(i) with i C a(p). By definition, these elements axe nonlocal with

respect to p.

• sending all elements A(i) local to p to all processors p_ such that i E a(p').

Each processor p must establish a set of buffer elements in its local memory for storing the

nonlocal objects specified in a(p).

Let p,p_ denote two arbitrary distinct processors. Then we denote by RECEIVE(p,p') the set of

elements of A to be received in p from pP, and by SEND(p,p '):=RECEIVE(p ',p) the set of elements

of A to be sent from p to p_. Based on the above read schedule _, the receive sets can be immedi-

ately specified as RECEIVE(p,p'):--a(p) M AA(p'). Due to the symmetry of the two classes of sets,

we can then determine all send sets after a global communication phase.

The application of a write schedule is similar. Note that write schedules are only relevant if a

work distribution different from the owner computes paradigm [20] is used.

3.3 Patterns

Schedules, as discussed above, are usually determined based on an inspector analysis of array access

patterns in a loop. In this section, we formalize the concepts related to patterns and specify the

mapping from patterns to schedules.

Definition 4 Pattern Functions and Array Loop Patterns

1. Let R denote a loop iteration domain, and I an array index domain. A pattern function

is a total function lr : R --* P(I).

2. An array loop pattern (ALP) for array A and loop L with direction d is a quadruplet

(L, A, T_,d), where _ is a pattern function mapping the loop iteration domain of L to the in-

dex domain associated with A. An ALP is respectively called a read pattern or a write pattern,

depending on whether d : "R" or d = "W". []

A pattern function describes an array access pattern for the iterations of a parallel loop. More

specifically, it expresses the fact that, for each r E R, iteration r accesses the elements with indices

i E 7r(r) for some array. Note that r does not depend on a particular array or loop - it refers only

to the associated index and iteration domains - and is also independent of related data and work
distributions.

When we bind a pattern function to a specific array (with a well-defined distribution), a specific

loop (with a well-defined work distribution), and a direction we obtain an ALP. From a given ALP,

an array schedule can be determined according to the following lemma:

Lemma 1 Mapping ALPs to Array Schedules

Let (L, A, r, d) denote an ALP. The corresponding array schedule is given by (A, a, d), where a =

p2s(w L, 5 A, 7r) is defined as

4

:-- - for each p P.
[]

As can be seen from the construction used in the above lemma, the array schedule for a given

ALP only depends on the associated data and work distributions. Two ALPs (L, A, rr, d) and

(L _,X, r I, dI) are called equivalent iff

• the loop iteration domains and work distributions of L and L I are identical,

• the index domains and data distributions of A and A _ are identical, and

• their pattern functions, lr and 7r_, are identical.

4 Language Features for Schedule Control

In this section, we describe the syntax and semantics of language extensions for the explicit control

of schedules. The main objective for the introduction of these features is to provide the user with

a means to assert to the compiler/runtime system that a schedulc computation is redundant and

can be suppressed, reusing a previously computed schedule.

4.1 Schedule Variables and Their Values

Schedule variables are declared using a SCHEDULE directive, which must occur in the speci-

fication part of a program unit.

!HPF+ SCHEDULE:: S

Schedule variables can be organized into arrays and appear as components of derived types. At any

time within its scope, a schedule variable is either undefined or has a well-defined value. Initially -

immediately after processing its declaration (or, if a SAVE attribute is specified, after processing

the first instance of the declaration) - a schedule variable is set to undefined. Another way to set

a schedule variable to undefined is to apply the RESET directive to thc variable.

At any time, a schedule variable is associated with a (possibly empty) set of array schedules,

{(Al,a, dl), ..., (An, a, dn)}, n > O. If the schedule variable is defined, i.e. n >__0, then all Ai have

the same index domain, I, the same data distribution, 5, and the same communication behavior,

as spccified by a. Wc call thc triplet (I, 5, a) the core of the value bound to the schedule variable.

A given array may occur in two array schedules associated with a schedule variable, if it uses a

gather and a scatter schedule with the same schedule function.

If we discuss the reuse of a schedule via a schedule variable with a defined value, then only its

core is relevant: the schedule variable may be associated with a new set of arrays and arbitrary

directions, as long as its core remains the same.

In the following, we will often characterize the value of a schedule variable by a set of equivalent

ALPs rather than by explicitly specifying it in the above sense. Since, by Lemma 1, these ALPs

uniquely determine a core as well as a list of associated array schedules, this does not restrict thc

generality of the discussion.

Our language extensions provide multiple ways for specifying the value of a schedule variable.

The most important method is to use the result of the (implicit) inspector analysis performed for

a parallel loop. Another method is schedule assignment, which, in a way similar to conventional

assignment, binds the result of a schedule expression to a schedule variable. Furthermore, there are

methods for the explicit specification of patterns, discussed in Section 6.

There is one particular context for a schedule variable, established by a parallel loop, which

has a special semantics. We call this a def-use context. If a schedule variable occurring in such

a context is undefined, then a value for the variable will be defined (for example, by executing

an inspector or evaluating a pattern specification). If, on the other hand, the schedule variable is

already defined, then the schedule computation will be suppressed and the schedule to which the

variable is bound will be applied. The occurrence of a schedule variable in a def-use context is

semantically correct only if the associated schedule function specifies precisely the communication

that has to be performed.

For certain simple cases, the user can control the redundancy of a schedule computation without

explicitly introducing schedule variables. As described in the next subsection, we provide a single

keyword, REUSE, to support this functionality.

In the next few subsections, we use a series of examples to show how users can control the com-

putation of the schedule in various situations. We always assume here that the original computation

of a schedule is performed by an inspector.

4.2 Unnamed Schedules

In some situations, the implementation can be directed to reuse a set of schedules without the

need to explicitly introduce schedule variables for that purpose. In particular, if a schedule is to

be reused with the same loop being called repeatedly and is not used with any other loop the user

does not need to explicitly name the schedule and can control the reuse of the schedule for the loop

by a reuse clause. In this case, all communication schedules required for the loop are treated as a

single unit and are subject to the reuse semantics.

Example 1 Unconditional Schedule Reuse Without Schedule Variable

DO t=l,max_time

...

!HPF+ INDEPENDENT, ON HOME(Y(I)), REUSE
L: DO I:I,N

X(IXI(I)) = X(IX2(I))+Y(I)*Y(I)/(Z(IXI(I))-U(IXI(I),IX2(I)))

END DO

END DO

In the above code, loop L, is executed max_times. By specifying the REUSE attribute in the

INDEPENDENT directive, the user is indicating that the access patterns for all arrays are not

going to change across multiple executions of the loops. That is, the values of the arrays used as

indexvectors,IX1 and IX2, along with the distributions of the arrays X, Y and Z remain invariant

during the execution of the outer loop. Thus, loop L, when entered first, will activate inspector

analysis to determine the read patterns for X, Y, Z, and U, and the write pattern for X. For all

subsequent executions, the schedules determined during the first execution will be reused. []

In our experience, many codes which use indirection vectors to access arrays do not change the

values of the vectors during execution once they have been initialized. For example, an unstructured

grid code which is non-adaptive will read in the grid points and set up the grid interconnections

in the initialization phase of the program. Since the grid does not change during the execution of

the program these interconnections and consequently the index vectors representing the neighbors

remain invariant throughout the program. In such situations, the REUSE construct provides the

user with a simple mechanism to assert this fact to the compiler, which then can organize the reuse

of the communication schedules once computed for the loop. Note that the directive will work even

if the outer loop is in one procedure which repeatedly calls another procedure containing the the

parallel loop. That is, in the above code, the loop L can be in a different procedure which is called

from the outer loop.

In cases when thc index vectors are changing or the arrays themselves are being dynamically

redistributed, a simple generalization of the REUSE construct allows the specification of a con-

dition for reuse. This condition is evaluated whenever a schedule for the loop has already been

computed by a previous execution. If it yields TRUE, the old schedule is reused; otherwise a new

schedule is computed.

Example 2 Conditional Schedule Reuse Without Schedule Variable

LOGICAL USE_OLD

DO t= 1,max_time

!HPF+ INDEPENDENT, ON HOME(C(I)), REUSE (USE_OLD)

L: DO I=I,N

i(I) = B(IX(I)) + C(I)

END DO

USE_OLD -- . TRUE.

IF RECONFIGURE(...)

THEN CALL RECOMPUTE(IX); USE_OLD=. FALSE.
END IF

END DO

Here, the logical variable USE_OLD is used to further control the generation of the schedule. That

is, its value is set to FALSE when the index vector, IX is changed. Note that if the schedule is

undefined, which will be the case the first time that the loop L is executed, the value of the associated

condition is ignored. In subsequent executions, the value of the condition, the logical variable here,

will control the generation of a new schedule. []

4.3 Using Schedule Variables

In this section, we illustrate the use of schedule variables for the specification of schedule reuse.

We cover conditional and unconditional reuse, and reuse across different loops.

Schedule variables may be associated with arrays in the context of a parallel loop by means of

the gather directive and the scatter directive. Both directives establish a def-use context.

The gather directive, in its simplest form, has the syntax

GATHER(AI,...,An :: S)

where S is a schedule variable, and A1, • • •, An denote arrays with identical shapes and distributions,

and equivalent read patterns in the loop. This construct associates S with the corresponding set

of equivalent ALPs.*

Syntax and semantics for the scatter directive are similar, except that the keyword SCATTER

is used and the direction of the communication is reversed.

No array may appear in more than one gather or more than one scatter directive associated

with the same loop. Note, however, that a given array may be associated with different schedule

functions in a gather and scatter schedule.

Example 3 Unconditional Schedule Reuse in a Loop

!HPF+ SCHEDULE:: S

DO t:l,max_time

!HPF+ INDEPENDENT, ON HOME(C(I)), GATHER (B::S)

L: DO I=I,N

A(I) -- B(IX(I)) + C(I)

...

END DO

END DO

At the time execution reaches the independent loop first, the value of S is undefined. At that time,

the GATHER clause causes the execution of the inspector for the accesses to B in the loop, and the

assignment of the resulting schedule to S. On subsequent iterations of the outer loop, the schedule

bound to S is reused for B.

The work distribution of L, as specified by the ON clause, is given by wL(I) ---- t_C(I) for all

I = 1,... N, i.e., iteration I is performed on the processor that owns element I of array C. The

ALP for B is given as (L, B, _r, R), where the pattern function, 7r, is specified as 7r(I) : {IX(I)}

for all I. The resulting array schedule for B is (B, a, R), where (see Lemma 1) for each p • P :

a(p) := UlexL(p)IX(I) - AB(p).

*This association of S can be extended by other gather or scatter directives in the context of the same loop.

[]

8

If ascheduleis to be reusedacrosssubsequentprocedureinvocations,it hasto bedeclaredwith the
saveattribute. This is shownin the followingexample,whichusesa slightly moregeneralaccess
pattern: the pattern function,7r,for B is now 7r(I) = {IZl(I), IZ2(I)}.

Example 4 Reusing Schedules in Procedures

DO t=l,max_time

,0.

CALL IRREG(B,IXI,IX2)

,0.

END DO

SUBROUTINE IRREG(X,IXI,IX2)

!HPF+ SCHEDULE, SAVE :: S

...

!HPF+ INDEPENDENT, ON HOME(C(I)), GATHER (B::S)

L: DO I=I,N

A(I) = B(IXI(I)) + B(IX2(I))*C(I)

END DO

END SUBROUTINE

Another mechanism for reusing schedules in procedures is to declare them as global variables

in modules, thus implicitly saving them between calls. If schedules became first class objects in the

base language, then they could be declared at an appropriate level and passed down the call chain

similar to any other data structure.

By means of the reset directive, the definition status of a schedule variable may be set to

undefined. This allows the control of schedule reuse depending on runtime conditions. We slightly

modify Example 3 to illustrate this.

Example 5 Conditional Schedule Reuse

!HPF+ SCHEDULE:: S

...

DO t-- 1,max_time

!HPF+ INDEPENDENT, ON HOME(C(I)), GATHER (B::S)

L: DO I=I,N

A(I) = B(IX(I)) + C(I)

END DO

IF RECONFIGURE(...) THEN

CALL RECOMPUTE(IX)

!HPF+ RESET S
END IF

END DO

9

As in Example 3, when the independent loop is encountered first during execution, the value of S is

undefined, and the gather clause results in the execution of the inspector and the assignment of the

resulting schedule to S. On subsequent iterations of the outer loop, the value bound to S is reused as

long as the logical function RECONFIGURE yields FALSE. If the reference to RECONFIGURE

evaluates to TRUE, the reset directive sets the definition status ors to undefined, and the inspector

is executed anew when the independent loop is encountered in the next iteration of the outer loop.I:]

The previous examples have shown how a single array can be associated with a schedule variable.

Below, we generalize Example 3 by showing how to associate the same schedule variable with

different arrays. If, in such a situation, an inspector has to be executed, the implementation selects

one of the arrays for performing the inspector analysis. The language does not specify the selection

criterion.

Example 6 Multiple Use of a Schedule

!HPF+ SCHEDULE:: S

°..

DO t= 1,max_time

!HPF+ INDEPENDENT, ON HOME(C(IX(I))), SCATTER(A::S), GATHER(B,C::S)
L: DO I:I,N

A(IX(I)) = B(IX(I)) + C(IX(I))

END DO

END DO

This example differs from Example 3 in that all three arrays are accessed irregularly, using the

same indirection array IX and thus the same pattern function, based on the assumption that all

three arrays are distributed identically. When execution encounters the independent loop first, S is

undefined. One of the three arrays is then selected for inspector analysis. []

Example 7 Using Multiple Schedule Variables in a Loop

DO t= 1,max_time

CALL SUB (X,Y,Z,U,V,IXI,IX2)

END DO

SUBROUTINE SUB(X,Y,Z,U,V,IXI,IX2)
!HPF+ SCHEDULE, SAVE :: S1,$2,$3

!HPF+ INDEPENDENT, ON HOME(Y(I)), GATHER (X::S2,Z::S1,U::S3), SCATTER (X::S1)
L: DO I=I,N

.°.

X(IXI(I)) = X(IX2(I))+Y(I)*Y(I)/(Z(IXI(I))-U(IXI(I),IX2(I)))
...

10

END DO

END SUBROUTINE SUB

In this example

• S1 is associated with the ALPs (L,Z, Iq,R) and (L,X, Trl,W), where 7r1(I) = {IXI(I)} for

I=I,...N.

• $2 is associated with the ALP {(L,X, Tr2,R)}, where r2(I) = {IX2(I)} for I = 1,...g.

• $3 is associated with the ALP {(L,U, Tr3,R)}, where 7r3(I) = {IZl(I),IX2(I)} for I =

1, ...N.

The loop distribution is determined by the loop iteration range [1 : N] and the associated on

clause ON HOME(Y(I)) (see Example 3).

This example is only correct if 5x = 6Z. []

In the following, we extend Example 7 by showing how to apply a schedule computed in one loop

to another loop.

Example 8 Using a Schedule Across Different Loops

!HPF+ SCHEDULE :: $1,$2,$3

!HPF+ INDEPENDENT, ON

HOME(Y(I)), GATHER (X':S2,Z::S1,U::S3), SCATTER (X::S1)

LI: DO I--1,N

...

X(IXI(I)) = X(IX2(I))+Y(I)*Y(I)/(Z(IXI(I))-U(IXI(I),IX2(I)))

END DO

!HPF+ INDEPENDENT, ON HOME(Y(I)), GATHER (X,V::S1), SCATTER (V::S2)

L2: DO I=I,N

V(IX2(I)) = X(IXI(I))+Y(I)*Y(I)*V(IXI(I))

END DO

Here, the values to which S1, $2, and $3 are bound via the gather and scatter clauses associated

with L1 are the same as for loop L in the previous example. $1 and $2 are reused in L2. When

L2 is entered for the first time, all schedule variables used in this loop already have a defined value,

and no inspector analysis is required. _.

By reusing a schedule variable in two different loops, the user is guaranteeing that the core of

the schedule, i.e., the index domain, the schedule function and the data distributions involved are

the same. The compiler (and the runtime system) just reuse the schedules as specified without

checking. Thus, the reuse of S1 and $2 in the above example would not work if the on clauses

specified in L1 and L2 were different or if the distributions of X and V were not the same.

11

4.4 Schedule Assignment Directive

A schedule assignment directive has the form S -- schedule-expression, where S is a reference to

a schedule variable. Such an assignment is executed by evaluating the schedule-expression and

binding its result to S.

For the purpose of this paper, we consider only two cases for a schedule expression: first, a

refcrencc to a schedule variable, and second, a union of schedules, which uses the operator symbol

If the schedule expression is a reference to a schedule variable, then the result of evaluating it

is the value to which the variable is currently bound.

If the schedule expression is a union, S1 ÷ $2, then assume first that S1 and $2 both are

defined. S1 and $2 must be associated with the same array index domain, I, and the same array

distribution, 5, resulting in respective cores (I, 5,al) and (I, 5, a2). Then the value yielded by the

expression is characterized by the core (I, 5, al U _2), and the set of associated array schedules is

empty. If S1 or $2 are undefined, or the expression is not well-defined, then the schedule expression

returns undefined.

Example 9 Schedule Assignment

!HPF÷ SCHEDULE :: S1,$2,$3

!HPF÷ INDEPENDENT, ON HOME(Y(I)), GATHER (X::S2,Z::S1), SCATTER (X::S1)
LI: DO I----1,N

x(ixl(i)) = x(Ix2(I))+(z(mxl(i))

END DO

!HPF÷ $3----S1+$2 ! Schedule assignment, computing the union o/schedules $1 and $2

!HPF+ INDEPENDENT, ON HOME(Y(I)), GATHER (X::S1,V::S3), SCATTER (V::S2)
L2: DO I--1,N

V(IX2(I)) = X(IXI(I))+Y(I)*Y(I)*(V(IXI(I)÷V(IX2(I)))

END DO

The schedule variable $3 is defined by a schedule assignment, which computes the union of the

schedules associated with S1 and $2. $3 is associated with the ALP (L2, V, n3, R), where 7r3 =

7r 1 U 7r 2 .

5 Unstructured Mesh Multigrid Example

In this section we present, in relative detail, a more concrete example, using multigrid techniques

on an unstructured mesh. We show how the features described above can be utilized to specify the

reuse of communication schedules for the multiple levels of the unstructured mesh. Note that the

code shown here is not complete for the sake of brevity and clarity. In particular, we do not show

12

! Type Declarations

TYPE vert

INTEGER id

INTEGER bdry_flag

_INTEGER par_a,par_b,par_c

REAL ca,cb,cc
REAL sol

REAL old_sol

REAL delta

REAL res

REAL f

END TYPE vert

! boundary flag

! vertices of parent cell

! interpolation coej_cients
! current solution
! last solution

! change in solution
! residual

!]orcing function

TYPE edge
INTEGER id

INTEGER va, vb

END TYPE edge

! vertices

TYPE grid_type

INTEGER nedge
INTEGER nvert

TYPE (edge), POINTER, DIMENSION (:) :: elist

TYPE (vert), POINTER, DIMENSION (:) :: vlist

END TYPE grid_type

Figure 1: Multigrid on an Unstructured Mesh: Type Declarations

any of the distributions since the discussion here is independent of the actual distribution used for

the data structures.

Figure 1 shows the global type declarations used for an unstructured mesh including those for a

vertex containing indices of the parent cell in a finer mesh, an edge with its two vertices, and a grid

containing a list of edges and and a list of vertices. The main program generates the unstructured

meshes, grids, at nlev+ 1 levels setting up the interconnections between the meshes and initializing

the forcing function of the mesh at the finest levcl, i.e., grids(O). It repeatedly calls the routine

cycle to execute one multigrid cycle. The routine cycle (also shown in Figure 2) conducts one V-

cycle of the multigrid algorithm. It "relaxes" the grid at each level while calling the rest to restrict

the values from a fine grid to a coarse grid. Then, it uses the routine prolo to interpolate values

from a coarse grid to a finer grid. The code until this point does not require any communication,

except possible synchronization required to initially generate an unstructured mesh in parallel.

The routine relax, shown in Figure 3 performs a relaxation on an unstructured mesh by sweeping

over the edges of the mesh and updating the values at the vertices of each edge based on the old

values at the vertices. The loop is declared to be independent and each iteration is to be executed

on the processor which owns the edge being computed upon. This could require gathering up the

values at vertices which do not reside on the same processor as the edge, computing the new values

and then scattering the values to the owning processors. Since each call to relax works on a mesh

13

at a different level, an HPF compiler would have to regenerate the schedule each time unless it

could perform interprocedural analysis to determine that there are nlev ÷ 1 different meshes each

requiring a different schedule. Such analysis is complex and is currently not available in any HPF

compiler.

Using the features described in the last section, the user can indicate the required number of

schedules and when to reuse them. Thus, two arrays of nlev _- 1 schedules are declared in the

specification part. On each call to relax, the current level lv is also passed in and is used to index

the appropriate schedule for gathering values from the elist and vlist and scattering data to the

vlist. At each mesh level, the first call to relax would encounter an undefined schedule and hence

the inspector would be called to generate the schedule. Since the schedules are declared with save

attribute, on subsequent cycles of the multigrid, the old schedule at each level can be reused without

executing the inspector. Again, if schedules were first class objects in the language, they could be

declared at the top, e.g., in the grid_type itself, and then passed down the call chain.

Figure 4 shows the prolongation routine, prolo and the restriction routine, rest. These are

similar to relax except they "translate" values between the vertex lists of meshes at two levels.

The code structure is similar to the routine relax and similar declarations of schedule arrays can be

used to specify the reuse of the schedules. The only difference is that we need only nlev schedules

here since each schedule handles the data transfer between two levels. Again, without the schedule

specification the compiler would either have to regenerate the schedules on each call or carry out

complex inter-procedural analysis to determine the right schedule to use on each call.

6 Explicit Pattern Specification

Until now, we assumed that a schedule is originally computed by an inspector, which preprocesses

the loop at runtime by analyzing its array access patterns. Based on the access pattern for an

array, the inspector can determine the associated array schedule by taking into account the work

distribution of the loop and the data distribution for the array.

Although, in principle, this approach is always possible, inspector analysis may become very

costly if nested loops and procedure calls occur in the parallel loop. In this section, we discuss lan-

guage features for explicit pattern specification to support the user in a situation where inspector

computation is impractical or highly inefficient and the user knows the access patterns used in the

application.

The evaluation of a pattern specification results in a pattern function (see Definition 4). In the

context of a parallel loop, a pattern function can be combined with an array and a direction to

form an ALP, from which a schedule can be determined.

We are currently studying how to extend the simple patterns, which can be specified based

upon Fortran 90 array reference syntax, to provide a more general specification capability in a way

similar to Vienna Fortran's user-defined distributions [1, 19, 4].

6.1 Simple Patterns

A simple pattern can be specified in the context of a gather or scatter clause associated with a

parallel loop L. We extend the syntax of these clauses, as introduced in the last section, by allowing

14

a pattern specification in the place of the schedule variable, possibly combined with an assignment

to the schedule variable. We illustrate this using the gather clause.

GATHER (A1,..., An :: [S =] pattern-spec)

The pattern-spec has the form

PATTERN (pattern-element,...pattern-element)

where each pattern-element is a parenthesized list of section-subscripts, one for each dimension of

the arrays Ai, all of which must have the same rank. At least one section subscript must contain

a reference to a do variable of L. Vector subscripts occurring in patterns are not restricted to

one-dimensional arrays, as in Fortran 90.

Let R denote the iteration domain of L, and I the common index domain of the Ai. Then a

pattern-spec is evaluated in the following way:

1. Evaluate the pattern elements, yielding pattern functions Ul,..-, _m, all of which map R to

the powerset of I.

2. Define the pattern function, _, for the pattern-spec as the union _ := Uj=l..m 7rj.

3. Bind 7r to all A_: this produces a set of equivalent ALPs: {(L, A1, _, R),..., (L, An, 7r, R)}.

4. If a schedule variable, S, has been specified, then bind S to the set of ALPs determined above.

The pattern function for a pattern element is evaluated by determining the values of all vari-

ables occurring in the section subscripts, which are not do variables of L and replacing them by

their values.

Example 10 Simple Pattern I

SUBROUTINE SWEEP(X,Y,EDGE)

o,.

!HPF+ SCHEDULE, SAVE :: S

..°

!HPF+ INDEPENDENT, ON HOME(EDGE(I,1)), REDUCTION (Y), &
!HPF+ GATHER (X,Y::S= PATTERN ((EDGE(I,I:2)))), SCATTER (Y::S)

L: DO I----1,NEDGE

NI=EDGE(I,1); N2=EDGE(I,2); DELTAX = F(X(N1),X(N2))

Y(N1) = Y(N1) - DELTAX

Y(N2) = Y(N2) + DELTAX
END DO

END SUBROUTINE SWEEP

15

The simple pattern specification in this example consists of one pattern element, which in turn

is a list with one section subscript, EDGE((I,I:2). This determines a pattern function, 7r, with

7r(I) = {EDGE(I, 1), EDGE(I, 2)} for all I = 1,..., NEDGE. The associated set of ALPs is

{(L,X, Tr, R), (L,Y, Tr, R), (n,Y,r, W)}.

This computation is only performed upon the first execution of L. All subsequent executions

reuse this schedule. No inspector analysis has to be performed.O

The example below illustrates a pattern consisting of more than one pattern element. It ex-

presses the patterns of the second loop in Example 8 explicitly, without using schedule variables.

Example 11 Simple Pattern II

DO t--1,max_time

CALL SUB2 (X,Y,Z,U,V,IXI,IX2)

.°.

END DO

SUBROUTINE SUB2(X,Y,Z,U,V,IXI,IX2)

!HPF+ INDEPENDENT, ON HOME(Y(I)), GATHER (X:: PATTERN ((IXI(I))), &
!HPF+ V:: PATTERN ((IXI(I), (IX2(I)))), SCATTER (V:: PATTERN ((IX2(I))))

L2: DO I=I,N

V(IX2(I)) = X(IXI(I))+Y(I)*Y(I)*(V(IXI(I)+V(IX2(I)))

END DO

,..

END SUBROUTINE SUB2 []

7 Implementation

In this section we describe the language features and compilation techniques provided by the Vienna

Fortran Compilation System (VFCS [2]) for the parallelization of irregular applications. We outline

the main steps in transforming independent do loops with irregular data accesses according to the

inspector-executor strategy [17, 13, 16] and present performance results for a benchmark kernel

which has been extracted from a crash-simulation code. A hand-optimized version of the parallel

code shows that communication schedule reuse is crucial to amortize the overhead of this run-time

parallelization strategy.

7.1 Inspector-Executor Parallelization Strategy

VFCS supports the HPF-2 INDEPENDENT directive together with the NEW and REDUCTION clauses.

Moreover, the user may specify the mapping of loop iterations to processors by means of the ON and

ON HOME clauses. Arrays accessed within independent loops may be distributed using the BLOCK,

GEN_BLOCK or INDIRECT distribution formats. Indirection arrays may be distributed and arbitrarily

nested.

16

The process of paxallelizing irregular loops combines compile time parallelization techniques with

runtime analysis. Information from data-flow analysis, data dependence analysis, data distribution

and overlap analysis is utilized. The runtime support of VFCS for irregular loops is based on an

enhanced version of the PARTI ([6]) and CHAOS ([18]) runtime routines.

VFCS transforms irregular independent loops into three main phases: the work distributor, the

inspector, and the executor.

According to the on-clause of an independent loop L the work distributor calculates on each

processor p the set X L (p) of loop iterations to be executed. Depending on its structure, the execution

set is either represented as a regular section by a triplet or as a one-dimensional integer array.

The inspector performs a runtime analysis of the loop in order to determine for each distributed

array the required communication schedules. This is accomplished by iterating on each processor

over the computed execution set, evaluating the subscripts of all distributed arrays, and storing

the indices in global reference lists. These lists are passed together with the corresponding lay-

out descriptors to library procedures that return the resulting gather/scatter schedules and the

corresponding local reference lists. In the case of a multi-level indirection, the array accesses are

processed in multiple phases, starting with the innermost arrays.

For each nonlocal data item accessed in a processor, a local buffer element is reserved. The

executor phase begins by gathering all nonlocal read data from remote processors, according to the

gather schedules determined by the inspector, and placing them into the associated buffer elements.

Following this transfer, the transformed loop body is executed; nonlocal data are read and written

using their associated buffer elements. After all iterations have been performed, all nonlocal data

that were written in a processor are scattered to their owner using the scatter schedules determined

by the inspector.

7.2 Performance Results

We present performance results for a finite-element kernel that has been developed in the context

of the HPF+ project. The kernel represents the basic stress-strain calculation of a crash-simulation

code based on 4-node shell elements. It uses an explicit time-marching scheme which is represented

in the kernel by an outer loop performing 250 iterations. A simplified structure of the kernel is

shown in Figure 5.

From the time-step loop in the main program the subroutine KFORCE is called with distributed

arguments. The corresponding actual arguments inherit the mapping and thus no data motion is

required at the procedure boundary. The main variables used in the kernel (F, A, and V) represent

the forces, accelerations, and velocities at nodal points, respectively. X represents the coordinates

of nodal points, and IX captures the connectivity of the elements in the unstructured mesh.

The first independent loop in KFORCE represents the element-wise force calculation. Before the

call to MFORCE all required data is gathered into private temporary variables which are declared

as NEWin the INDEPENDENT directive. The communication required for gathering distributed data

into the temporaries is determined at runtime by means of inspectors. The major part of the

computational cost of the algorithm is within the procedure NFORCE which operates on processor-

private data only, and thus does not induce communication. The second independent loop performs

a sum-scatter operation to add back the elemental forces to the forces stored at the nodes.

The kernel used in our evaluation employed an unstructured mesh with 35571 nodes and 35000

17

II Processors Total (Unoptimized)
1 (seq.) 545.45

2 598.98

Inspector Gather ScatterII SpeedUp

347.63(58%) 2.31 2.38 0.9
172.48(57%) 4.33 6.22

50.66(51%)

304.75 1.8

8 160.19 89.60 (56%) 5.33 7.81 3.4
16 100.04 8.68 10.78 5.5

32 80.99 36.34 (45%) 10.78 11.65 6.7

Table 1: Times for crash kernel without schedule reuse.

Processors [[Total (Schedule Reuse) Inspector Speed Up Unoptimized/Schedule Reuse

2 285.22 1.47 1.9 2.1

4 153.00 0.81 3.6 2.0

8 79.10 0.47 6.9 2.0

16 47.47 0.31 11.5 2.1

32 35.31 0.20 15.4 2.3

Table 2: Times for crash kernel with schedule reuse (hand optimized).

elements. A total of 20 distributed arrays were used for which VFCS generated 9 different inspector

phases within the KFORCE procedure. Table 1 shows the time measurements obtained for the un-

optimized kernel as paxallelized by VFCS and executed on the Meiko CS-2 for 2 to 32 processors t.

The second column of the table shows the total time spent in executing the procedure KFORCE. As

can be seen, approximately 50 % of the total execution time is due to the overhead of the inspector

phases for computing the required communication schedules. These schedules are recomputed in

every incarnation of the procedure since the system fails to detect the invariance of the commu-

nication patterns. Note that in a real simulation the overhead induced by the repeated execution

of inspectors would be orders of magnitude higher since the number of time-steps is usually in the

range of 105 .

Table 1 also shows the accumulated time spent with gather and scatter communications, re-

spectively. Since the communication is unstructured and involves all processors, the fraction of

time spent with communication increases almost linearly with the number of processors from less

than 1% on 2 processors to 28% on 32 processors.

Table 2 shows the total time spent in procedure KFORCE where all communication schedules

were computed in the first iteration of the time-step loop and reused in subsequent iterations.

This optimization has been carried out by manually adapting the code generated by VFCS. As the

timings show, the overhead of the time spent in computing communication schedules is reduced to

less than 1% and results in a performance improvement of more than a factor of 2.

tThe time for one processor refers to the HPF-F program compiled with the SUN FORTRAN 77 compiler Version
3.0.1 with optimization level -03 and executed on a single node.

18

8 Related Work

The inspector/executor runtime preprocessing technique was initially implemented in the Kali [13]

compiler. The PARTI [6] runtime library was developed to provide runtime support for a class of

irregular problems characterized by a sequence of concurrent computational phases, where patterns

of data access and computational cost of each phase cannot be predicted until runtime. They were

designed to ease the implementation of irregular problems on distributed memory parallel archi-

tectures by relieving the user of having to deal with many low-level machine specific issues. The

PARTI routines support communication schedule computation, global-to-local index transforma-

tion and schedule-based communication generation. The CHAOS library [16, 18], a superset of

PARTI, provides additional support for the parallelization of adaptive irregular problems where in-

direction arrays are modified during the course of the computation. A number of research compilers,

including the Fortran D compiler [9], the Vienna Fortran Compilation System [2], and others [3]

have used these libraries for the compilation of irregular codes based on the inspector/executor

approach.

In [16] a simple run-time technique for communication schedule reuse is presented which is

based on a global time-stamping method to keep track of whether indirection arrays that influence

the communication pattern of a particular loop have been modified. Each inspector checks the

corresponding time-stamps to determine whether relevant indirection arrays have been modified

since the last inspector invocation.

Hanxleden [10] developed the Give-N-Take data flow framework which is used for the placement

of communication statements in parallelized programs. He uses techniques that are based on

partial redundancy elimination and symbolic analysis to eliminate redundant inspectors in certain

restricted cases.

First proposals for applying program slicing techniques to the optimization of indirect array

accesses were made in [7, 8]. These techniques construct program slices containing the subset of

statements affecting nonlocal array accesses at a particular program point. Multiple indirection

levels can be eliminated by applying a flattening transformation. A dedicated program analysis

based on the topological sort of a slice graph is employed for the elimination of redundant slices.

Most of these techniques, however, are restricted to certain limited forms of loop bodies and fail in

the presence of procedure calls.

The PILAR [14] run-time support library developed in the context of the PARADIGM com-

piler [15] aims at exploiting regularity in irregular accesses by using an interval-based representation

of communication schedules. The PARADIGM system relies on special directives to guide the com-

piler in placing the communication in the presence of irregular references.

9 Conclusion

In this paper, we described a set of language features that allow the explicit manipulation of com-

munication schedules at the HPF language level. Our method is based on the concept of schedule

variables, whose values are communication schedules computed by an inspector or, alternatively,

defined by the user by specifying the access pattern to an array with appropriate high-level direc-

tives.

19

These features are currently being implemented in the framework of the Vienna Fortran Com-

pilation System (VFCS). We plan to apply this methodology to a set of important applications,

evaluate the resulting performance, and use the results to adjust the functionality of the language

extensions accordingly.

Acknowledgment

The authors thank their partners in the ESPRIT project "HPF+", in particular Guy Lonsdale and

George Mozdzynski, for many fruitful discussions on this subject. We also thank Viera Sipkova for

the performance measurements discussed in Section 7.2.

References

[1] Benkner, S. Vienna Fortran 90 and its Compilation. Ph.D. Thesis. Technical Report TR 94-8, University

of Vienna, Institute of Software Technology and Parallel Systems, November 1994.

[2] Benkner, S., Andel, S., Blasko, R., Brezany, P., Celic, A., Chapman, B.M., Egg, M., Fahringer, T.,

Hulman, J., Hou, Y., Kelc, E., Mehofer, E., Moritsch, H., Paul, M., Sanjari, K., Sipkova, V., Velkov,

B., Wender, B., Zima, H.P.: Vienna Fortran Compilation System - Version 1.2 - User's Guide, October
1995.

[3] Z. Bozkus, A. Choudhary, G. Fox, T. Haupt, and S. Ranka. Fortran 90D/HPF compiler for distributed
memory MIMD computers: Design, implementation, and performance results. In Proceedings of the

1993 ACM International Conference on Supercomputing, July 1993.

[4] B. Chapman, P. Mehrotra, and H. Zima. Programming in Vienna Fortran. Scientific Programming

1(1):31-50, Fall 1992.

[5] B. Chapman, P. Mehrotra, and H. Zima. Extending HPF for Advanced Data Parallel Applications.

IEEE Parallel and Distributed Technology, Fall 1994, pp.59-70.

[6] R. Das, J. Saltz, A manual for PARTI runtime primitives - Revision 2. Internal Research Report,
University of Maryland, Dec. 1992

[7] R. Das, J. Saltz, and R. von Hanxleden. Slicing Analysis and Indirect Accesses to Distributed Arrays.

Technical Report CS-TR-3076, UMIACS-TR-93-42, University of Maryland, College Park, MD, 1993.

[8] R. Das, A. Susman, P. Havlak, J. Saltz. Compiler Analysis and Optimization of Indirect Array Accesses.

In Proceedings o/ the 5th Workshop on Compilers for Parallel Computers. Malaga, Spain, June 1995.

[9] R. von Hanxleden, K. Kennedy, C. Koelbel, R. Das, and J. Saltz. Compiler Analysis for Irregular

Problems in Fortran D. In Proceedings of the 5th Workshop on Languages and Compilers for Parallel
Computing, New Haven, CT, August 1992.

[10] R. von Hanxleden and K. Kennedy. Give-N-Take: A balanced code placement framework. In ACM
SIGPLAN '9_ Program Language Design and Implementation, June 1994.

[11] High Performance Fortran Forum. High Performance Fortran Language Specification Version 1.0. Tech-

nical Report, Rice University, Houston, TX, May 3, 1993.

[12] High Performance Fortran Forum. High Performance Fortran Language Specification Version 2.0.ft

Technical Report, Rice University, Houston, TX, January 31, 1997.

[13] C. Koelbel and P. Mehrotra. Compiling global name-space parallel loops for distributed execution.
IEEE Transactions on Parallel and Distributed Systems, 2(4):440 451, October 1991.

[14] A. Lain and P. Banerjee. Exploiting Spatial Regularity in Irregular Iterative Applications. In Proceedings

of the 9th International Parallel Processing Symposium, Santa Barbara, CA, April 1995.

2O

[15]P.Banerjec,J.A. Chandy,M.Cupta,J.G.Holm,A.Lain,D.J. Palermo,S.Ramaswamy,andE.Su.
ThePARADIGMCompilerfor Distributed-MemoryMessagePassingMulticomputers,In Proceedings

of the First International Workshop on Parallel Processing, Bangalore, India, December, 1994.

[16] R. Ponnusamy, J. Saltz, A. Choudhary. Runtime Compilation Techniques for Data Partitioning and
Communication Schedule Reuse. Technical Report, UMIACS-TR-93-32, University of Maryland, April
1993.

[17] J. Saltz, K. Crowley, R. Mirchandaney, and H. Berryman. Run-time scheduling and execution of loops

on message passing machines. Yournal of Parallel and Distributed Computing, 8(2):303-312, 1990.

[18] J. Saltz, R. Das, B. Moon, S. Sharma, Y-S. Hwang, R. Ponnusamy, M. Uysal : A Manual for the

CHAOS Runtime Library, Technical Report, University of Maryland, College Park, MD 20742, May
1994.

[19] H. Zima, P. Brezany, B. Chapman, P. Mehrotra, and A. Schwald. Vienna Fortran - a language specifi-

cation. ICASE Internal Report 21, ICASE, Hampton, VA, 1992.

[20] H. Zima and B. Chapman. Compiling for Distributed Memory Systems. Proceedings of the IEEE,
Special Section on Languages and Compilers for Parallel Machines, pp. 264-287, February 1993.

21

PROGRAM main
INTEGER rdev
TYPE (grid_type), ALLOCATABLE :: grids(:)
REAL err

! allocates grids(O:nlev-1) and the edge list, elist, and the vertex list, vlist,
! at each level based on input values and sets up parent-child and neighbor interconnections

CALL setup(grids, nlev)

! set fine grid forcing function

CALL fine_set (grids(0)%vlist)

DO WHILE (err .GE. 1.0E-5)

CALL cycle(grids, nlev)

err = sqnorm(grids(0)%vlist)
END DO

..o

END

SUBROUTINE cycle(grids, nlev)

TYPE (grid_type) :: grids(:)
INTEGER nlev

INTEGER iv, lvc

! relax each level, and perform restriction, moving to coarsest grid
DO lv = 0, nlev-1

lvc = lv +1

CALL relax(grids(lv)%vlist, grids(lv)%nvert, grids(lv)%elist, grids(lv)%nedge, Iv, nlev)
CALL rest(grids(lv)%vlist, grids(lv)%nvert, grids(lvc)%vlist, grids(lvc)%nvert, Iv, nlev)

END DO

! relax each level, and perform prolongations, moving to finest grid

DO Iv = nlev-1, 0, -1
lvc = lv + 1

CALL relax(grids(lvc)%vlist, grids(lvc)%nvert, grids(lvc)%elist, grids(lvc)%nedge, iv, nlev)

CALL prolo(grids(lv)%vlist, grids(lv)%nvert, grids(lvc)%vlist, grids(lvc)%nvert, lv, nlev)
END DO

END

Figure 2: Multigrid on an Unstructured Mesh: Main Program and Cycle Routine

22

SUBROUTINE relax(vlist,nvert,elist,nedge,iv, nlev)
TYPE (edge):: elist(nedge)
TYPE (vert)::vlist(nvert)
INTEGER nvert,hedge
INTEGER lv, nlev

INTEGER ia, ib
REAL om,fix

!HPF+SCHEDULE, SAVE ::s(0:nlev-1),g(0:nlev-1)

! initialize residual to forcing function

vlist(:)%res = vlist(:)%f

! loop over edges on this level accumulating residual unto vertices
!HPF$ INDEPENDENT, ON (HOME(elist(e)), NEW (ia,ib,fix), REDUCTION (vlist)

!HPF+ GATHER (elist::s(lv)), GATHER (vlist::g(lv)), SCATTER (vlist::g(lv))

DO e = 1, ncdge

ia = ehst(e)%va

ib = elist(e)%vb

fix = flux(vlist(ia), vlist(ib))

vlist(ia)%res =

vlist(ib)%res =
END DO

vlist(ia)%res + fix

vlist(ib)%res - fix

! loop over vertices on this level "relaxing" solution

vlist(:)%sol = vlist(:)%sol + om * vlist(:)%res

! update boundaries

CALL apply_bc(vlist, nvert)

END

Figure 3: Multigrid on an Unstructured Mesh: Relaxation Routine

23

SUBROUTINE rest(fine_vlist,fine_nvert,vlist,nvert,lv, nlev)
TYPE (vert)::vlist(nvert),fine_vlist(fine_nvert)
INTEGER lv, nlev, nvert, fine_nvert

TYPE (vert) :: va, vb, vc

!HPF+ SCHEDULE, SAVE :: s(0:nlev-1), g(0:nlev-1)

! zero coarse grid right forcing function

vlist(:)%f = 0.0
! loop over fine grid vertices

!HPF$ INDEPENDENT, ON (HOME(fine_vlist(v)), NEW (va,vb,vc), REDUCTION (vlist(:) %res)

!HPF+ GATHER (fine_vlist::s(lv)), GATHER (vlist::g(lv)), SCATTER (vlist::g(lv))
DO v = 1, fine_nvert

va = fme_vlist(v)%par_a; vb = fine_vlist(v)%par_b; vc = fine_vlist(v)%par_c
! accumulate residual at a fine grid vertex unto its coarse grid parent vertices

vlist(va)%res = vlist(va)%res + fine_vlist(v)%ca * fine_vlist(v)%res

vlist(vb)%res = vlist(vb)%res + fine_vlist(v)%cb * fine_vlist(v)%res

vlist(vc)%res = vlist(vc)%res + fine_vlist(v)%cc * fine_vlist(v)%res
END DO

END

SUBROUTINE prolo(fine_vlist, fine_nvert, vlist, nvert, lv, nlev)

TYPE (vert) :: vlist(nvert), fine_vlist(fine_nvert)
INTEGER lv, nlev, nvert, fine_nvert

TYPE (vert) :: va, vb, vc

!HPF+ SCHEDULE, SAVE :: s(0:nlev-1), g(0:nlev-1)

! loop over fine grid vertices
!HPF$

INDEPENDENT, O N (HOME (fine_vlist (v)), NEW (va,vb,vc), REDUCTION (fine_vlist (:) %sol)

!HPF+ GATHER (vlist::s0v)), GATHER (fine_vlist::g(lv)), SCATTER (fine_vlist::g(lv))
DO v = 1, fine_nvert

va = fine_vlist(v)%par_a; vb = fme_vlist(v)%par_b; vc = fine_vlist(v)%par_c
! linearly interpolate values in vertices va,vb, vc and update v

fine_vlist(v)%sol = fine_vlist(v)%sol + fme_vlist(v)%ca * vlist(va)%delta + &

fme_vlist(v)%cb * vlist(vb)%delta + fme_vlist(v)%cc * vlist(vc)%delta +
v.ca*va.delta + v.cb*vb.delta + v.cc*vc.delta

END DO

END

&

Figure 4: Multigrid on an Unstructured Mesh: Routines for Restriction and Prolongation

24

!HPF$

PROGRAM

...

REAL, DIMENSION(3,NUMNP) :: X

REAL, DIMENSION(4,NUMEL) :: IX

REAL, DIMENSION(6,NUMNP) :: F, A, V

REAL, DIMENSION(6,NUMEL) :: FORCE1, FORCE2, FORCE3, FORCE4

DISTRIBUTE (*,BLOCK) :: X, IX, F, A, V, FORCE1, ...

.°.

DO T=I,MAX_TIME

CALL KFORCE(F,X,IX,...)

END DO

...

END

SUBROUTINE KFORCE(f,x,ix,...)

!HPF$ INHERIT :: F, X, IX, ...

REAL XN(3,4), FORCE(6,4)

...

!HPF+ INDEPENDENT, NEW(XN,FORCE,...), ON HOME (IX(1,I))
DO I -- 1, NUMEL

XN = X(:,IX(:,I)) ! gather coordinates

CALL MFORCE(XN, FORCE, ...) ! calculate forces

FORCEI(:,i) ---- FORCE(:,I)

..°

END DO

!HPF$ INDEPENDENT, REDUCTION (F)
DO I -- 1, NUMEL ! sum-scatter reduction

DO J=l, 6

F(J,IX(1,I)) = F(J,IX(1,I)) + FORCEI(J,I)

...

END DO

END DO

.°.

END SUBROUTINE

Figure 5: Simplified structure of the finite-element crash simulation kernel.

25

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Pubtlc reporting burden for this collection of information is estimated to average 1 hour pe_ response, including the time for reviewing instructions, searching existing data sources,

pthering and maintaining the data needed, and completing and reviewing the collection of information_ Send comments reprding this burden estimate or any other aspect of this

collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway. Suite 1204, Arlington, VA 22202-4302. and to the Office of Management and Budget, Paperwork Reducbon ProJect (0704-0188). Washington, DC 20503

1. AGENCY USE ONLY(Leave blank) 2, REPORT DATE 3. REPORT TYPE AND DATES COVERED

September 1997 Contractor Report

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

High-Level Management of Communication Schedules in HPF-Like

Languages

6. AUTHOR(S)

Siegfried Benkner, Piyush Mehrotra, John Van Rosendale, and Hans Zima

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computer Applications in Science and Engineering

Mail Stop 403, NASA Langley Research Center

Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-2199

C NAS1-19480

WU 505-90-52-01

8. PERFORMING ORGANIZATION
REPORT NUMBER

ICASE Report No. 97-46

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA CR-201740

ICASE Report No. 97-46

ll. SUPPLEMENTARY NOTES

Langley Technical Monitor: Dennis M. Bushnell

Final Report

To be submitted to Supercomputing '97

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified Unlimited

Subject Category 60,61

Distribution: Nonstandard

Availability: NASA-CASI (301)621-0390

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The goal of High Performance Fortran (HPF) is to "address the problems of writing data parallel programs where the

distribution of data affects performance", providing the user with a high-level language interface for programming

scalable parallel architectures and delegating to the compiler the task of producing an explicitly parallel message-

passing program. For some applications, this approach may result in dramatic performance losses. An important

example is the inspector/executor paradigm, which HPF uses to support irregular data accesses in parallel loops.

In many cases, the compiler does not have sufficient information to decide whether an inspector computation is re-

dundant or needs to be repeated. In such cases, the performance of the whole program may be significantly degraded.

In this paper, we describe an approach to solve this problem through the introduction of constructs allowing explicit

manipulation of communication schedules at the HPF language level. The goal is to avoid the use of EXTRINSICS

for expressing irregular computation via message-passing primitives, while guaranteeing essentially the same perfor-

mance. These language features allow the user to control the reuse of schedules and to specify access patterns that

may be used to compute a schedule. They are being implemented as part of the HPF÷ language and we report

some preliminary performance numbers from this implementation.

14. SUBJECT TERMS

HPF, language extensions, parallel loops, irregular accesses

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

_ISN 754lN01-280-5500

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATIOK

OF ABSTRACT

15. NUMBER OF PAGES

27

16. PRICE CODE

A03
20. LIMITATION

OF ABSTRACT

'Standard Form 298(Rev, 2-89)
Prescribed by ANSI Std. Z39-18
298-102

